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Direct Products

Given a finite collection {Gi}ni=1 of groups, the Cartesian product
∏n

i=1Gi = G1 × · · · × Gn is a

group: one can easily verify that the group operation given componentwise by

(g1, . . . , gn)(h1, . . . , hn)
def
= (g1h1, . . . , gnhn)

is closed and associative; the identity of
∏n

i=1Gi is (eG1 , . . . , eGn); and inverses are found in the

obvious way. We refer to the group
∏n

i=1Gi as the direct product of G1, . . . , Gn. Given that each

group Gi is finite (i.e., |Gi| <∞), it follows that |
∏n

i=1Gi| <∞. Explicitly, we have that∣∣∣∣∣
n∏
i=1

Gi

∣∣∣∣∣ =
n∏
i=1

|Gi|

by the Fundamental Counting Principle. Our aim is to understand the structure of
∏n

i=1Gi.

Proposition 1. Given a group G with normal subgroups N and M such that N ∩M = {eG}, we

have that nm = mn for all elements n in N and m in M.

Proof. Given any elements n in N and m in M, consider the element n−1m−1nm of G. Our proof

is complete once we establish that n−1m−1nm = eG. By hypothesis that N E G, it follows that

m−1nm is in N so that n−1m−1nm is in N. Likewise, by hypothesis that M E G, we have that

n−1m−1n is in M so that n−1m−1nm is in M. Consequently, we have that n−1m−1nm = eG.

Theorem 1. Given a group G with normal subgroups N1, . . . , Nk, if every element of G can be

written uniquely as n1 · · ·nk for some elements ni in Ni, then we have that G ∼=
∏k

i=1Ni.

Proof. Consider the map ϕ :
∏k

i=1Ni → G defined by ϕ(n1, . . . , nk) = n1 · · ·nk. By hypothesis, we

have that ϕ is a bijection. We must establish that ϕ is a group homomorphism, i.e.,

n1n
′
1 · · ·nkn′k = ϕ((n1, . . . , nk)(n

′
1, . . . , n

′
k)) = ϕ(n1, . . . , nk)ϕ(n′1, . . . , n

′
k) = n1 · · ·nkn′1 · · ·n′k.

By Proposition 1, it suffices to show that Ni ∩ Nj = {eG} for all pairs of integers 1 ≤ i < j ≤ k.

We leave it to the reader to establish that this is the case.

Corollary 1. Given a group G with normal subgroups N and M such that N ∩M = {eG} and

G = NM, we have that G ∼= N ×M.

Proof. By Theorem 1, it suffices to show that every element of G can be written uniquely as nm

for some elements n in N and m in M. We leave the details to the reader.

Remark 1. Order in a direct product does not matter. Explicitly, we have that G×H ∼= H ×G.
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Finite Abelian Groups

We say that a group G with the property that gh = hg for all elements g, h in G is abelian.

Consequently, a finite abelian group G is an abelian group such that |G| <∞.

Remark 2. Every subgroup of an abelian group is normal. Explicitly, given an abelian group G

with a subgroup H of G, we have that gHg−1 = Hgg−1 = H for all elements g of G.

Our prototypical example of an abelian group is (Z,+); the quotient group (Z/nZ,+) is a finite

abelian group. By the Fundamental Theorem of Arithmetic, we have that n = pe11 · · · p
ek
k for some

prime numbers pi and non-negative integers ei. Considering that∣∣∣∣ ZnZ
∣∣∣∣ = n = pe11 · · · p

ek
k =

k∏
i=1

∣∣∣∣ Z
peii Z

∣∣∣∣ =

∣∣∣∣∣
k∏
i=1

Z
peii Z

∣∣∣∣∣,
there exists a bijection Z/nZ →

∏k
i=1 Z/p

ei
i Z. One might naturally ask if there exists a bijective

group homomorphism Z/nZ→
∏k

i=1 Z/p
ei
i Z. We answer this in the affirmative.

Theorem 2. (The Fundamental Theorem of Finite Abelian Groups) Given a finite abelian group

G, there exist (not necessarily distinct) primes pi and non-negative integers ei such that

G ∼=
k∏
i=1

Z
peii Z

.

We refer to the prime powers peii as the elementary divisors of G.

Corollary 2. Given a finite abelian group G, there exist (not necessarily distinct) positive integers

n1, . . . , n` ≥ 2 such that ni |ni+1 for each integer 1 ≤ i ≤ `− 1 and

G ∼=
∏̀
i=1

Z
niZ

.

We refer to the positive integers ni as the invariant factors of G. We may adopt the shorthand

Z/nZ def
= Zn with the caveat that this notation will later become ambiguous. For the abelian group

G = Z2 × Z2 × Z4 × Z8 × Z3 × Z3 × Z3 × Z5 × Z25,

the elementary divisors are 2, 2, 22, 23, 3, 3, 5, and 52. By arranging the elementary divisors of G

creatively, we can find the invariant factors. Explicitly, we have the following algorithm.

1.) Find the prime p that appears the most times in the direct product representation of G. Given

that two or more primes appear an equal number of times, choose one arbitrarily.

2.) Create a row of all powers of p that appear in the representation of G, listing these powers in

non-increasing order from right to left.

3.) Repeat the second step with the prime q that appears the second most times (or the same

number of times as p) in the direct product representation of G.
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4.) Continue this process until all primes appearing in the direct product representation of G

have been written in a row. One should end with an upper-triangular array.

5.) By multiplying the elements of each consecutive column, we obtain the invariant factors of G.

By following this procedure with the group G at hand, we have the following array.

2 2 22 23

3 3 3

5 52

By multiplying the elements of each consecutive column, we obtain the invariant factors of G: 2, 6,

60, 600. By Corollary 2, we have that G ∼= Z2 × Z6 × Z60 × Z600.

Conversely, one can obtain the elementary divisors from the invariant factors. Observe that

G = Z2 × Z2 × Z14 × Z98 × Z294

is a finite abelian group with invariant factors 2, 2, 14 = 2 · 7, 98 = 2 · 72, and 294 = 2 · 3 · 72.

Consequently, we may build an upper-triangular array that contains the elementary divisors.

1.) Given the invariant factors ni of G with n1 |n2 |n3 | · · · |n`, express each invariant factor ni
as a product of distinct prime powers by the Fundamental Theorem of Arithmetic.

2.) Create an upper-triangular array whose ith column consists of the distinct prime powers

p
ei,1
i,1 , . . . , p

ei,k
i,k such that ni = p

ei,1
i,1 · · · p

ei,k
i,k .

3.) We obtain the elementary divisors of G as the elements of the upper-triangular array.

By following this procedure with the group G at hand, we have the following array.

2 2 2 2 2

7 72 3

72

We find that the elementary divisors of G are 2, 2, 2, 2, 2, 3, 7, 72, and 72. By Theorem 2, we have

that G ∼= Z2 × Z2 × Z2 × Z2 × Z2 × Z3 × Z7 × Z49 × Z49.

Ultimately, the Fundamental Theorem of Finite Abelian Groups implies that the structure of a

finite abelian group G is uniquely determined (up to isomorphism) by its elementary divisors (or

equivalently, its invariant factors). Further, we note that the elementary divisors of G are (not

necessarily uniquely) determined by the unique prime factorization of |G|. One can (and should)

prove that there are two unique (up to isomorphism) groups of order 4 = 22: the Klein 4-group

Z2 × Z2 and the cyclic group Z4 of order four. Each of these groups corresponds to a distinct

partition of the integer 2. Generally, we define a partition of an integer n as a k-tuple (n1, . . . , nk)

such that n =
∑k

i=1 ni and 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk. Considering that 2 = 1 + 1 and 2 = 2, there

are two distinct partitions of 2. Consequently, there are two distinct abelian groups of order 4.

Q1a, August 2018. Consider a finite abelian group G. Given that |G| = 14553000 = 23 · 33 · 53 ·
72 · 11, how many distinct (up to isomorphism) possibilities are there for the group G?
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We have stated the Fundamental Theorem of Finite Abelian Groups without proof, but the tools

that are used to in the proof are quite useful to understand on their own. We will also give explicit

descriptions of the Zpeii in the case of the finite cyclic group Zn of order n.

We define first the positive integer ord(g) = inf{k ≥ 1 | gk = eG} to be the order of g.

Remark 3. Given a finite group G and an element g of order r, we have that

(i.) r divides |G| by Lagrange’s Theorem and

(ii.) if gn = eG, then r divides n by the Euclidean Algorithm.

Explicitly, if we denote 〈g〉 by H, then we have that |H| = r because the elements g, g2, . . . , gr−1,

and gr = eG are all distinct. Consequently, we have that |G| = |H|[G : H] = r[G : H] by Lagrange’s

Theorem. On the other hand, by the Euclidean Algorithm, we may write n = pr + q for some

integers p and 0 ≤ q ≤ r − 1. Considering that eG = gn = gpr+q = gprgq = (gr)pgq = epGg
q = gq and

r = ord(g) = min{k ≥ 1 | gk = eG} by definition, we must have that q = 0 so that r divides n.

Proposition 2. Given positive integers m and n with gcd(m,n) = 1, we have that Zmn ∼= Zm×Zn.

Proof. Consider the element g = (1, 1) of Zm × Zn. Using additive notation, by definition, we

have that ord(g) = min{k ≥ 1 | kg = eG} = min{k ≥ 1 | k ≡ 0 (mod m) and k ≡ 0 (mod n)}.
Consequently, we have that m | k and n | k so that lcm(m,n) | k. Considering that

mn = lcm(m,n) gcd(m,n) = lcm(m,n)

by hypothesis that gcd(m,n) = 1, it follows that mn | k so that mn ≤ k. But it is always true for any

element g of a finite groupG that ord(g) ≤ |G|, hence we have that k ≤ |Zm×Zn| = mn.We conclude

therefore that k = mn so that Zm×Zn is cyclic with generator (1, 1) of order mn. Up to isomorphism,

the unique cyclic group of order mn is Zmn, hence we must have that Zm × Zn ∼= Zmn.

Theorem 3. Given a positive integer n = pe11 · · · p
ek
k for some distinct primes pi and non-negative

integers ei, we have that Zn ∼= Zpe11 × · · · × Zpekk .

Proof. We proceed by induction on the order n of Zn. Clearly, the claim holds (trivially) for the

case that n = 2. We will assume inductively that Theorem 3 is true for all groups of order ≤ n. By

Proposition 2, we have that Zn ∼= Zr×Zs for the relatively prime integers r = pe11 and s = pe22 · · · p
ek
k ,

hence by induction, we conclude that Zn ∼= Zr × Zs ∼= Zpe11 × Zpe22 × · · · × Zpekk .

Given an abelian group G and a prime p, consider the set

G(p) = {g ∈ G | ord(g) = pn for some integer n ≥ 0}.

Proposition 3. G(p) is a subgroup of G.

Proof. Observe that G(p) is nonempty: ord(eG) = 1 = p0. By the one-step subgroup test, it suffices

to prove that if g and h are in G(p), then gh−1 is in G(p). We leave this to the reader.

Proposition 4. Consider an abelian group G and an element g of G with ord(g) < ∞. We have

that g = g1 · · · gk for some elements gi in G(pi) for each distinct prime pi such that pi | ord(g).
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Proof. We proceed by induction on the number of primes k in the unique prime factorization of

ord(g). Given that k = 1, we have that ord(g) = pn for some prime p and non-negative integer n,

from which it follows that g is in G(p) by definition of G(p).

We will assume inductively that Proposition 4 is true for all elements whose order is divisible

by at most k − 1 distinct primes. Given that ord(g) = pe11 · · · p
ek
k for some distinct primes pi and

positive integers ei, we may factor ord(g) as mn for m = pe11 and n = pe22 · · · p
ek
k . By hypothesis that

the pi are distinct, we have that gcd(m,n) = 1, hence by Bézout’s Theorem, we find that

am+ bn = 1

for some integers a and b. Consequently, we have that g = gam+bn = gamgbn. Observe that

(gbn)m = gbmn = gb ord(g) = (gord(g))b = ebG = eG,

from which it follows that gbn is in G(p1). Likewise, we have that

(gam)n = gamn = ga ord(g) = (gord(g))a = eaG = eG,

from which it follows that ord(gam) |n so that ord(gam) = pf22 · · · p
fk
k for some distinct primes pi and

non-negative integers fi. By induction, we may write gam = g2 · · · gk for some elements gi in G(pi)

for each distinct prime pi and gbn = g1 for some g1 in G(p1) so that g = gamgbn = g1g2 · · · gk.

Theorem 4. Given a finite abelian group G, we have that G ∼=
∏k

i=1G(pi) for some distinct primes

pi that divide the order of G.

Proof. By Theorem 1, it suffices to show that every element of G can be written uniquely as g1 · · · gk
for some elements gi in G(pi), where gi = eG if the prime pi does not divide ord(g).

Consider two representations g1 · · · gk = h1 · · ·hk of an element g in G such that gi and hi are

in G(pi). By hypothesis that G is abelian, we have that

g1h
−1
1 = h2g

−1
2 · · ·hkg−1k .

By Proposition 2, G(pi) is a subgroup of G for each integer 1 ≤ i ≤ k, hence hig
−1
i is in G(pi) for

each integer 2 ≤ i ≤ k. By definition, for each integer 2 ≤ i ≤ k, we have that ord(hig
−1
i ) = peii for

some integer ei ≥ 0. Consider the integer n = pe22 · · · p
ek
k . We have that

(g1h
−1
1 )n = (h2g

−1
2 · · ·hkg−1k )n = (h2g

−1
2 )n · · · (hkg−1k )n = eG

by hypothesis that G is abelian and ord(hig
−1
i ) = peii |n. But this implies that ord(g1h

−1
1 ) |n.

Considering that ord(g1h
−1
1 ) = pe11 for some integer e1 ≥ 0, we must have that e1 = 0 so that

g1h
−1
1 = eG or g1 = h1.Of course, we can repeat this to find that gi = hi for all integers 2 ≤ i ≤ k.

Sylow’s Theorems

Given a prime p and an integer n ≥ 0, we say that a group of order pn is a p-group. One refers to

a subgroup of a p-group as a p-subgroup, as it is also a p-group by Lagrange’s Theorem. Observe

that every group contains at least one p-subgroup — namely, the trivial subgroup {eG}.
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Theorem 5. (Cauchy’s Theorem for Finite Groups) Given a finite group G and a prime p that

divides |G|, there exists an element g in G such that ord(g) = p.

Proof. Consider the set X = {(g1, . . . , gp) ∈
∏p

i=1G | g1 · · · gp = eG}. Observe that (g1, . . . , gp) is

uniquely determined by the p − 1 elements g1, . . . , gp−1 that can be chosen without restriction,

hence we have that |X| = |G|p−1 by the Fundamental Counting Principle. By hypothesis, |G|p−1 is

divisible by p. Given that g1 · · · gp = eG, it follows that g1 · · · gp−1 = g−1p so that gpg1 · · · gp−1 = eG.

Consequently, we have that (gσ(1), . . . , gσ(p)) is in X for each cyclic permutation σ of {1, . . . , p},
from which it follows that Z/pZ acts on X via (n + pZ) ∗ (g1, . . . , gp) = (gσn(1), gσn(2), . . . gσn(p)),

where σn(i) = i− n (mod p). By the Orbit-Stabilizer Theorem, |O(x)| divides |Z/pZ| = p for each

x in X, hence we have that |O(x)| ∈ {1, p}. By the Class Equation for Group Actions, we have that

|G|p−1 = |X| =
n∑
i=1

|O(xi)|

for some representatives xi of the distinct cosets G/ StabG(xi). Considering that

n∑
i=1

|O(xi)| = |G|p−1 ≡ 0 (mod p),

we conclude that the number of orbits of size 1 is a multiple of p. Put another way, we have that

|FixZ/pZ(X)| is a multiple of p. Observe that (eG, . . . , eG) is a fixed point of X under the specified

action of Z/pZ, hence we have that |FixZ/pZ(X)| ≥ p, i.e., there exists a nontrivial fixed point in X.

By definition, there exists an element (g1, . . . , gp) of X such that (gσn(1), . . . , gσn(p)) = (g1, . . . , gp) for

all integers 1 ≤ n ≤ p. But we must have therefore that (g1, . . . , gp) = (g, . . . , g) for some element

g of G such that gp = eG, i.e., such that ord(g) = p. Our proof is therefore complete.

Proposition 5. Given a finite abelian group G, the group G(p) is a p-subgroup of G.

Proof. By Proposition 2, we have that G(p) is a subgroup of G, hence it suffices to prove that

|G(p)| = pn for some integer n ≥ 0. On the contrary, we will assume that |G| is divisible by some

other prime q. By Cauchy’s Theorem, there exists an element g in G(p) of order q. Clearly, this is

a contradiction: by definition, the elements of G(p) all have order pn for some integer n ≥ 0.

Given that |G| = pnm for some non-negative integer m such that gcd(p,m) = 1, we refer to

a subgroup of G of order pn as a Sylow p-subgroup of G. We will denote by Sylp(G) the set of

Sylow p-subgroups of G and by np(G) the number of distinct Sylow p-subgroups of G.

Q1b, August 2018. Consider a finite abelian group G. Given a prime p that divides |G|, prove

that G has a unique Sylow p-subgroup.

Theorem 6. (Sylow’s Theorems) Consider a group G of order pnm such that gcd(p,m) = 1.

1.) There exists at least one Sylow p-subgroup of G. Put another way, Sylp(G) is nonempty.

2.) If P is a Sylow p-subgroup of G and Q is any p-subgroup of G, then there exists an element g

in G such that Q ⊆ gPg−1. Particularly, any two Sylow p-subgroups of G are conjugate in G.
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3.) We have that np(G) ≡ 1 (mod p) and np(G) |m.

Remark 4. Given that P is the unique Sylow p-subgroup of G, it follows that P is a normal

subgroup of G. Explicitly, the group homomorphism χg : G → G defined by χg(h) = ghg−1 is

a bijection, hence we have that |gPg−1| = |P | so that gPg−1 is a Sylow p-subgroup of G. By

hypothesis, therefore, we conclude that gPg−1 = P, and this holds for all g in G.

Remark 5. Given distinct Sylow p-subgroups P and Q of order p, we have that P ∩ Q = {eG}.
Considering that P ∩ Q is a subgroup of both P and Q, it follows by Lagrange’s Theorem that

|P ∩Q| divides |P | = |Q| = p so that |P ∩Q| ∈ {1, p}. Considering that P 6= Q by assumption, we

must have that |P ∩Q| = 1. For if |P ∩Q| = p, then it would be true that P = P ∩Q = Q.

Using Sylow’s Theorems. We call a group G simple if the only normal subgroups of G are the

trivial subgroup {eG} and the group G itself. Prove that a group G of order 1365 cannot be simple.

Proof. Observe that 1365 = 3 · 455 = 3 · 5 · 91 = 3 · 5 · 7 · 13 is the unique prime factorization of |G|.
By Sylow’s Theorems, we may make the following observations.

(i.) n3 ≡ 1 (mod 3) and n3 | 5 · 7 · 13 so that n3 ∈ {1, 7, 13, 5 · 7 · 13}

(ii.) n5 ≡ 1 (mod 5) and n3 | 3 · 7 · 13 so that n5 ∈ {1, 3 · 7, 7 · 13}

(iii.) n7 ≡ 1 (mod 7) and n7 | 3 · 5 · 13 so that n7 ∈ {1, 3 · 5}

(iv.) n13 ≡ 1 (mod 13) and n13 | 3 · 5 · 7 so that n13 ∈ {1, 3 · 5 · 7}

Given that any of these integers is 1, we are done by Remark 4. On the contrary, we will assume that

none of these integers is 1. Consequently, we have that n3 ≥ 7, n5 ≥ 21, n7 = 15, and n13 = 105.

Observe that a Sylow p-subgroup of order p has p−1 elements of order p. By Remark 5, the distinct

Sylow p-subgroups of order p intersect trivially, hence we have that

#{elements of order p in G} = (p− 1)np.

We have therefore that there are ≥ 2 · 7 + 4 · 21 + 6 · 15 + 12 · 105 elements of order 3, 5, 7, or 13.

But this is impossible: we have that |G| = 1365 < 1448 = 2 · 7 + 4 · 21 + 6 · 15 + 12 · 105.

Q1, August 2010. Prove that every group G of order 30 has a cyclic subgroup of order 15.

Q1, August 2011. Prove that the center of a non-abelian group G of order 21 is trivial.

Q4, August 2014. Consider a prime p > 5 such that p 6≡ 1 (mod 5). Prove that any group G of

order 15p contains a subgroup of order 5p.

Q2, January 2015. Prove that a group G of order 435 = 3 · 5 · 29 must be abelian.

Q1c, August 2015 Give an example of a group G with a normal subgroup H such that both H

and G/H are nilpotent but G is not nilpotent.

Q1, January 2019. Given a group G such that |G| = 15, prove that G is cyclic.
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